Modular Leonard Triples

BRIAN CURTIN

University of South Florida, Department of Mathematics
4204 E. Fowler Ave., Tampa FL 33647
bcurtin@math.usf.edu
http://www.math.usf.edu/~bcurtin/

Let K denote a field, and let V denote a vector space over K of finite positive dimension. An ordered triple A, A^*, A° of linear operators on V is said to be a Leonard triple whenever for each $B \in \{A, A^*, A^\circ\}$, there exists a basis of V with respect to which the matrix representing B is diagonal and the matrices representing the other two operators are irreducible tridiagonal. A Leonard triple A, A^*, A° is said to be a modular whenever for each $B \in \{A, A^*, A^\circ\}$, there exists an antiautomorphism of $\text{End}(V)$ which fixes B and swaps the other two operators. We present a characterization of the modular Leonard triples. This characterization involves explicit formulas for the entries of the matrices that represent A, A^*, and A° with respect to a particular basis. The formulas are expressed in terms of four algebraically independent parameters. We discuss how modular Leonard triples correspond to special Leonard pairs, and hence to particular discrete Askey-Wilson polynomials.