The hyperbolic version of the Askey-Wilson difference equation involves two positive scale parameters a_+ and a_-, and four real coupling parameters c_0, c_1, c_2, c_3. We show that this equation admits a basis of two elementary meromorphic solutions for a dense set in the parameter space $(0, \infty)^2 \times \mathbb{R}^4$. The solutions are obtained via sixteen parameter shifts associated with the weight lattice of the Lie algebra D_4. We compare these solutions to previously known ones, observing they are minimal (in a sense coming from Nevanlinna theory) in the space of all meromorphic solutions.