Vietoris’ Theorem: A Complex View

STEPHAN RUSCHEWEYH

Department of Mathematics, Würzburg University
97074 Würzburg, Germany
ruscheweyh@mathematik.uni-wuerzburg.de

An analytic function \(f(z) \) in the unit disc \(\mathbb{D} \) is called \textit{stable} if \(s_n(f, \cdot)/f \prec 1/f \) holds for all for \(n \in \mathbb{N}_0 \). Here \(s_n \) stands for the \(n \)th partial sum of the Taylor expansion about the origin of \(f \), and \(\prec \) denotes the subordination of analytic functions in \(\mathbb{D} \). We prove that \((1 - z)^{\lambda} \), \(\lambda \in [-1, 1] \) are stable. The stability of \(\sqrt{(1 + z)/(1 - z)} \) turns out to be equivalent to the famous result of Vietoris on non-negative trigonometric sums. We discuss some generalisations of these results, and related conjectures, always with an eye on applications to positivity results for trigonometric and other polynomials.

References

