SYLLABUS
MAT 461  Applied Complex Analysis
FALL 2009*



  *Important Note: All items on this syllabus are subject to change.
Any in-class announcement, verbal or written, is considered
official addendum to this syllabus.


Instructor:      Dr. Sergei Suslov
Office:             PSA 621
Phone:             965-8987
E-mail:             sks@asu.edu
URL:               http://hahn.la.asu.edu/~suslov/index.html
Office Hours: TuTh  3:15-4:20  pm or by appointment
Room:              PSA 307
Line #:             74669
Time:               4:30 - 5:45 pm, TTh
Text: 
               Fundamentals of Complex Analysis, by E. B. Saff and A. D. Snider, 3rd edition, Prentice Hall 2003.

Prerequisite:   MAT 272 or equivalent
Exams:            There will be two regular in class exams (2*100);
                         homework & quizzes (100);
                         and a comprehensive final exam (200)
Grading Policy:
                         A-,A,A+ = 90 - 100%
                         B-,B,B+ = 80 - 89%
                         C,C+ = 70 - 79%
                         D = 60 - 69%
                         E = 0 - 59%
Material to be covered: Chapters 1-6 will be covered
Make-up policy: No make-up exams will be given without notification. Also, no late homework will be accepted for grading.



Course Description

F, SS Analytic functions, complex integration,
Taylor and Laurent series, residue theorem, conformal mapping, and harmonic functions.


Suggested MAT 461 Homework Problems

Section     Problems

1.1            5 - 11*, 14*, 15, 18, 20(a),(d)*, 26
1.2            1, 3, 4*, 5, 7(a)-(f)*, 8, 10*, 13-16
1.3            1(a)-(c)*, 5(a)-(c)*, 7(a)-(h)*, 10*, 15-16, 22
1.4            1(a)-(c)*, 2(a)-(c)*, 5*, 6(a), 7*, 8(a)-(b)*, 13, 20*
1.5            3, 4(a)-(b)*, 5(a)-(d)*, 7(a)-(c)*, 10, 14*
1.6            1, 2-8*, 21

2.1            1(a) -(c),(d)-(f)*, 4(a)-(c)*, 5(a)-(e)*, 6(a)-(c), 13
2.2            1*, 3*, 4, 5*, 9*, 11(a)-(f)*, 13
2.3            1*, 2,  3*, 4(a)-(c), 7(a)-(e)*, 9(a)-(b)*, 10, 11(a)-(c)*, 14, 15
2.4            1(a)-(c)*, 3*, 5, 6
2.5            1(a)-(c)*, 2, 3(a)-(c)*, 5, 6, 10

3.1            1*, 2(a)-(c)*, 5*, 11(a)-(d), 13
3.2            1*, 3*, 4, 5(a)-(f)*, 9*(a)-(f)*, 12(a)-(c), 23
3.3            1(a)-(d)*, 2,  5(a)-(c)*, 8, 9*, 11
3.5            1(a)-(d)*, 3(c),  7,  9*, 11, 12

4.1            1(a)-(d)*, 3*, 7, 11*
4.2            3(a)-(d)*, 6(a)*, 8*, 11(a)-(c)*, 13
4.3            1(a)-(c)*, 2*, 6*, 7*, 11*
4.4            9(a)-(e)*, 10(a)-(b)*, 17*
4.5            1*, 2*, 3(a)-(c)*, 5*

5.1            1(a)-(d)*, 3*, 5, 8, 9
5.2            1(a)-(f)*, 2, 3, 6*, 8(a)-(c)*, 11(a)-(d)*, 13, 14
5.3             2,  6(a)-(c)*, 7*, 10, 11*
5.5             1(a)-(d)*, 3(a)-(c)*, 7(a)-(b)*
5.6             1(a)-(d)*, 2, 3(a)-(c)*, 6*

6.1             1(a)-(h)*, 2, 3(a)-(d)*, 7*
6.2             1*, 2, 5*, 6

*homework problem to review



IMPORTANT INFO:

History of Mathematics Archive

Homework
HW#1, sections 1.1-1.4 due to  Tuesday, Sept 8
HW#2, sections 1.5, 1.6, 2.1-2.5 due to Thursday, Sept 24
HW#3
, sections 3.1-3.3, 3.5 due to
due to Thursday, Oct. 15
HW#4, sections 4.1-4.5 due to Thursday, Nov. 5,
HW#5, sections 5.1-5.3, 5.5 -5.6 and 6.1-6.2 due to  Thursday,

Quizes
Quiz#1 Tuesday, September  8
Sections 1.1-1.5, review problems with *
Quiz#2  Thursday, September 24
Sections 1.5, 1.6, 2.1-2.5review problems with *
Quiz#3  Thursday, November 5
Sections 4.1-4.5review problems with *

Tests
Test#1, Thursday, October 15
ReviewTuesday, October 13
Chapter 1, sections 1.1-1.6; chapter 2, sections 2.1-2.5; chapter 3, sections 3.1-3.3, 3.5 are on the test.
Topics to review:
Complex numbers, limit of sequence, limit of function, continuous functions, Analytic functions, Cauchy-Riemann's equations, Harmonic functions,  Polynomials and rational functions, Exponential and logarthm functins, Inverse trigonometric functions.
Problems to review:
See problems with * in the homework assignment.
Sample Test 1: ps, pdf

Test#2Tuesday, December 8
Review
Chapter 4, sections 4.1-4.6, chapter 5, section 5.1-5.3, 5.5-5.6 and chapter 6, sections 6.1-6.2 are on the test.
Topics to review:
Complex line integrals, Fundamental theorem of calculus
Cauchy's theorem, Cauchy's integral formula, Taylos series, Laurent series, Zeroes and singularities,  Cauchy's residue theorem and evaluation of integrals
Problems to review:
See problems with * in the homework assignment.

Final Exam Tuesday, December 15, 2:30 - 4:20 pm, PSA 307