SYLLABUS
MAT 461  Applied Complex Analysis
FALL 2010*



  *Important Note: All items on this syllabus are subject to change.
Any in-class announcement, verbal or written, is considered
official addendum to this syllabus.


Instructor:      Dr. Sergei Suslov
Office:             PSA 621
Phone:             965-8987
E-mail:           sks@asu.edu
URL:               http://hahn.la.asu.edu/~suslov/index.html
Office Hours: TuTh  1:30-2:50 pm or by appointment
Room:              PSA 306
Line #:             73313
Time:               4:30 - 5:45 pm, TTh
Text: 
               Fundamentals of Complex Analysis, by E. B. Saff and A. D. Snider, 3rd edition, Prentice Hall 2003.

Prerequisite:   MAT 272 or equivalent
Exams:            There will be two regular in class exams (2*100);
                         homework & quizzes (100);
                         and a comprehensive final exam (200)
Grading Policy:
                         A-,A,A+ = 90 - 100%
                         B-,B,B+ = 80 - 89%
                         C,C+ = 70 - 79%
                         D = 60 - 69%
                         E = 0 - 59%
Material to be covered: Chapters 1-6 will be covered
Make-up policy: No make-up exams will be given without notification. Also, no late homework will be accepted for grading.



Course Description

F, SS Analytic functions, complex integration,
Taylor and Laurent series, residue theorem, conformal mapping, and harmonic functions.


Suggested MAT 461 Homework Problems

Section     Problems

1.1            5 - 11*, 14*, 15, 18, 20(a),(d)*, 26
1.2            1, 3, 4*, 5, 7(a)-(f)*, 8, 10*, 13-16
1.3            1(a)-(c)*, 5(a)-(c)*, 7(a)-(h)*, 10*, 15-16, 22
1.4            1(a)-(c)*, 2(a)-(c)*, 5*, 6(a), 7*, 8(a)-(b)*, 13, 20*
1.5            3, 4(a)-(b)*, 5(a)-(d)*, 7(a)-(c)*, 10, 14*
1.6            1, 2-8*, 21

2.1            1(a) -(c),(d)-(f)*, 4(a)-(c)*, 5(a)-(e)*, 6(a)-(c), 13
2.2            1*, 3*, 4, 5*, 9*, 11(a)-(f)*, 13
2.3            1*, 2,  3*, 4(a)-(c), 7(a)-(e)*, 9(a)-(b)*, 10, 11(a)-(c)*, 14, 15
2.4            1(a)-(c)*, 3*, 5, 6
2.5            1(a)-(c)*, 2, 3(a)-(c)*, 5, 6, 10

3.1            1*, 2(a)-(c)*, 5*, 11(a)-(d), 13
3.2            1*, 3*, 4, 5(a)-(f)*, 9*(a)-(f)*, 12(a)-(c), 23
3.3            1(a)-(d)*, 2,  5(a)-(c)*, 8, 9*, 11
3.5            1(a)-(d)*, 3(c),  7,  9*, 11, 12

4.1            1(a)-(d)*, 3*, 7, 11*
4.2            3(a)-(d)*, 6(a)*, 8*, 11(a)-(c)*, 13
4.3            1(a)-(c)*, 2*, 6*, 7*, 11*
4.4            9(a)-(e)*, 10(a)-(b)*, 17*
4.5            1*, 2*, 3(a)-(c)*, 5*

5.1            1(a)-(d)*, 3*, 5, 8, 9
5.2            1(a)-(f)*, 2, 3, 6*, 8(a)-(c)*, 11(a)-(d)*, 13, 14
5.3             2,  6(a)-(c)*, 7*, 10, 11*
5.5             1(a)-(d)*, 3(a)-(c)*, 7(a)-(b)*
5.6             1(a)-(d)*, 2, 3(a)-(c)*, 6*

6.1             1(a)-(h)*, 2, 3(a)-(d)*, 7*
6.2             1*, 2, 5*, 6

*homework problem to review



IMPORTANT INFO:

History of Mathematics Archive

Homework
HW#1, sections 1.1-1.4 due to  Tuesday, August 31
HW#2, sections 1.5, 1.6, 2.1-2.5, 3.1-3.2 due to September 16
HW#3, sections 3.3, 3,5 due to October 5

Quizes
Quiz#1 Tuesday, August 31
Sections 1.1-1.4, review problems with *
Quiz#2 Thursday, September 16
Sections 1.5, 2.1-2.5, 3.1-3.2, review problems with *

Tests
Test#1, Thursday, October 14 
ReviewTuesday, October 12
Chapter 1, sections 1.1-1.6; chapter 2, sections 2.1-2.5; chapter 3, sections 3.1-3.3, 3.5 plus are on the test.
Topics to review:
Complex numbers, limit of sequence, limit of function, continuous functions, Analytic functions, Cauchy-Riemann's equations, Harmonic functions,  Polynomials and rational functions, Exponential and logarthm functins, Inverse trigonometric functions.
Problems to review:
See problems with * in the homework assignment.
Sample Test 1: ps, pdf

Test#2Tuesday, November
Review
Chapter 4, sections 4.1-4.6, chapter 5, section 5.1-5.3, 5.5-5.6 and chapter 6, sections 6.1-6.2 are on the test.
Topics to review:
Complex line integrals, Fundamental theorem of calculus
Cauchy's theorem, Cauchy's integral formula, Taylos series, Laurent series, Zeroes and singularities,  Cauchy's residue theorem and evaluation of integrals
Problems to review:
See problems with * in the homework assignment.

Final Exam Tuesday, December ??