SYLLABUS
MAT 572  Complex Analysis
FALL 2002*



  *Important Note: All items on this syllabus are subject to change.
Any in-class announcement, verbal or written, is considered
official addendum to this syllabus.


Instructor:       Dr. Sergei Suslov
Office:             PSA 629
Phone:             965-8987
E-mail:   sks@asu.edu
URL:    http://hahn.la.asu.edu/~suslov/index.html
Office Hours: 11:00-12:00 am TTh,  3:40-4:40 pm W, or by appointment
Text:    Complex Analysis, by  Lars Ahlfors,
                        McGraw-Hill, Third Edition, 1979
Prerequisite:   MAT 372 or equivalent
Exams:            There will be one regular in class exam (150);
                         homework (100);
                         and a comprehensive final exam (150)
Grading Policy:
                         A = 90 - 100%
                         B = 80 - 89%
                         C = 70 - 79%
                         D = 60 - 69%
                         E = 0 - 59%
Material to be covered: Chapters 1-5 will be covered



Course Description

F, SS Analytic functions, complex integration,
Taylor and Laurent series, residue theorem, conformal mapping,
and harmonic functions.


Suggested MAT 572 Homework Problems

Page            Problems

pp. 2-3:       # 1-3*
p. 4:              # 1-4*
p. 8:              # 1-3*
p. 11:            # 1, 2*, 3*
pp. 16-17:  # 1, 2, 4*
p. 28:            # 1, 3*, 4
p. 37:            # 1*, 2, 3, 4
p. 41:            # 1, 2, 3*, 4, 5, 6, 7, 8*, 9*
p. 44:            # 1*, 2*,  3*, 4*
p. 47:            # 1, 2, 3*,  4*,  8*, 9, 10*

p. 72:            # 1, 2
p. 78:            # 1, 2*, 3,  4
p. 80:            # 1
p. 108:         # 1*, 2*, 3,  4,  5*, 6*,  8
p. 120:         # 1*, 2*, 3*
p. 129:         # 1*, 2*, 3*

 *homework problem for grading



IMPORTANT INFO:

History of Mathematics Archive

Homework
HW#1, due to Thursday, Oct. 31

Tests
Test#1 Thursday, October 31
Review
Theorems to review:
Cauchy's inequality, pp. 10-11
Analyticity and Cauchy-Riemann equations, p. 28
Wieierstrass M test, p. 37
Theorem 2, parts (i)-(ii), p. 38-39
Exponential and trigonometric functions, pp. 42-47
Theorem 3, p. 56
Theorem 6, part 2, pp. 60-61
Theorem 7, p. 62
Homework problems to review:
See homework problems for grading with *

Final Exam Thursday, December 12, 7:40-9:30
Essay Cauchy's theory of residues