SYLLABUS
MAT 572  Complex Analysis
SPRING 2005*



  *Important Note: All items on this syllabus are subject to change.
Any in-class announcement, verbal or written, is considered
official addendum to this syllabus.


Instructor:      Sergei Suslov
Office:             PSA 621
Phone:             965-8987
E-mail:   sks@asu.edu
URL:    http://hahn.la.asu.edu/~suslov/index.html
Office Hours: 12:40-13:30 TTh, or by appointment
Text:    Functions of One Complex Variable, by  John Conway,
                        Springer-Verlag, Second Edition, 1978
Prerequisite:   MAT 372 or equivalent
Exams:            There will be one regular in class exam (100);
                         homework&projects (100);
                         and a comprehensive final exam (150)
Grading Policy:
                         A = 90 - 100%
                         B = 80 - 89%
                         C = 70 - 79%
                         D = 60 - 69%
                         E = 0 - 59%
Material to be covered: Chapters 1-5 will be covered



Course Description

F, SS Analytic functions, complex integration,
Taylor and Laurent series, residue theorem, conformal mapping,
and harmonic functions.


Suggested MAT 572 Homework Problems

Page            Problems

pp. 2-3:        # 1-6*
p. 4:              # 1-3*
p. 5-6:          # 1, 2(c),3,5*
p. 7:              # 1*
p. 33:            # 4, 6(a)-(d), 7*
pp. 43-44:    # 1, 3*, 4
pp. 54-57:    # 1*,6,7,9,13,29
pp. 67-68:    # 9*,11, 12*,19, 23*
pp. 74-75:    # 7(a)-(d)*,10
p. 80:            # 1*

 *homework problem for grading



IMPORTANT INFO:

History of Mathematics Archive

Homework
HW#1, Chapter I due to Tuesday, Feb. 22
HW#2, Chapters III-IV due to Tuesday, March 29

Tests
Test#1 Thursday, March 31
Review
Theorems to review:
Cauchy's inequality
Analyticity and Cauchy-Riemann equations
Wieierstrass M test
Exponential and trigonometric functions
Cauchy's intergal theorem and Cauchy's integral formula
Homework problems to review:
See homework problems for grading with *

Final Exam Thursday, May 
Essay Cauchy's theory of residues